A Perturbation Problem for the Shift Semigroup
نویسنده
چکیده
An E0-semigroup is a semigroup of unital endomorphisms of B(H), the set of bounded operators on an infinite dimensional separable Hilbert space H , with appropriate continuity. Despite the fact that B(H) is the simplest infinite dimensional factor, the classification of E0-semigroups is far from a satisfactory stage mainly caused by the presence of so called type II and type III examples [11],[12],[17]. Indeed, these classes are related to various areas of analysis, such as probability theory and harmonic analysis, which makes the subject more interesting and worth investigating than one would expect at first sight. The reader is referred to Arveson’s monograph [3] and contributions in [13], in particular those of Arveson, Powers, and Tsirelson among others, for history and basic results for the subject. In this paper, we investigate a purely operator theoretical problem motivated by Tsirelson’s construction of uncountably many mutually non-cocycle conjugate E0semigroups of type III [18]. Namely, let {St}t≥0 be the shift semigroup of L2(0,∞), that is
منابع مشابه
Derivations on Certain Semigroup Algebras
In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.
متن کاملAn iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces
begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...
متن کاملHomotopy perturbation method for eigenvalues of non-definite Sturm-Liouville problem
In this paper, we consider the application of the homotopy perturbation method (HPM) to compute the eigenvalues of the Sturm-Liouville problem (SLP) which is called non-definite SLP. Two important Examples show that HPM is reliable method for computing the eigenvalues of SLP.
متن کاملINVESTIGATION OF BOUNDARY LAYERS IN A SINGULAR PERTURBATION PROBLEM INCLUDING A 4TH ORDER ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we investigate a singular perturbation problem including a fourth order O.D.E. with general linear boundary conditions. Firstly, we obtain the necessary conditions of solution of O.D.E. by making use of fundamental solution, then by compatibility of these conditions with boundary conditions, we determine that, for given perturbation problem, whether boundary layer is formed or not.
متن کاملOn one algorithm for solving the problem of source function reconstruction
In the paper, the problem of source function reconstruction in a differential equation of the parabolic type is investigated. Using the semigroup representation of trajectories of dynamical systems, we build a finite-step iterative procedure for solving this problem. The algorithm originates from the theory of closed-loop control (the method of extremal shift). At every step of the algorithm, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007